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NON-LINEAR VIBRATIONS OF VISCOELASTIC
MOVING BELTS, PART I: FREE VIBRATION

ANALYSIS
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The non-linear free vibration of viscoelastic moving belts is studied. Based on the linear
viscoelastic differential constitutive law, the generalized equation of motion is derived for
a moving belt with geometric non-linearities. The method of multiple scales is applied
directly to the governing equation which is in the form of continuous autonomous
gyroscopic systems with weak non-linearity. This direct treatment does not involve a prior
assumption regarding the spatial solutions. The non-linear natural frequencies and free
response amplitude for autonomous systems are predicted by the perturbation method. The
results obtained with the quasi-static assumption and those without this assumption are
compared. The effects of elastic and viscoelastic parameters, axial moving speed, and the
geometric non-linearity on natural frequencies and amplitudes of the free response are
investigated from numerical examples.
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1. INTRODUCTION

Moving belts used in power transmissions are an example of a class of mechanical systems
commonly referred to as axially moving strings. The vibration analysis of such a system
has been studied extensively. For linear vibration analysis, Skutch [1] first determined the
natural frequencies of a moving string by superposition of two waves propagating in
opposite directions. The classical modal analysis, which is applied to the linear
non-translating string model, is not directly applicable to linear axially moving strings since
the generalized co-ordinates in an eigenfunction expansion remain coupled. Wickert and
Mote [2] modified the classical modal analysis method by casting the equations of motion
for a travelling string into a canonical, first order form that is defined by one symmetric
and one skew-symmetric matrix differential operators. When the equations of motion are
represented in this form, the eigenfunctions are orthogonal with respect to each other. The
response of axially moving materials to arbitrary excitation and initial conditions can be
represented in closed forms.

The earliest calculation of the fundamental period of autonomous non-linear transverse
vibrations of an axially moving, elastic, tensioned string was given by Mote [3].
Computation difficulties in the integration of the equation restricted the solution to speeds
below 40% of the critical speed. In the work done by Thurman and Mote [4], a hybrid
discretization and perturbation method were employed to quantify the speed dependence
of the deviation between the linear and non-linear fundamental periods for a broad range
of amplitude and speed parameters. This method was limited, however, in that secular
excitation terms in the perturbation analysis were rendered small, but not eliminated.
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Figure 1. Principal changes in belt force and belt length with time of service for V-belts: (a) pre-tensioning
with constant elongation; (b) pre-tensioning with constant force.

Bapat and Srinivasan [5] used the method of harmonic balance to obtain approximate
results. In Wickert’s study [6], the governing equations of motion were cast in the standard
form of continuous gyroscopic systems. A second order perturbation solution was derived
through the asymptotic methods of Krylov, Bogoliubov, and Mitropolsky for the
near-modal response of a general gyroscopic system with weakly non-linear stiffness.

In the investigations above, the belt material is assumed to be linear elastic and damping
is either ignored or introduced simply as linear viscous without reference to any damping
mechanism. However, belts are usually composed of some metallic or ceramic
reinforcement materials like steel-cord or glass-cord and polymeric materials such as
rubber. Most of these materials exert inherently viscoelastic behavior, i.e., they flow when
subjected to stress or strain. Such flow is accompanied by the dissipation of energy due
to some internal loss mechanism (for example, bond breakage and bond formation
reaction, dislocation). Figure 1 illustrates the creep of a practical belt during the operation
[7]. Dynamic loading in operation will not only lead to creep, but also to orientation of

Figure 2. Stress–strain curves showing relaxation and creep effects by repeated deformation of treated
polyester cord 1100×2×5.
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Figure 3. A prototypical model of a viscoelastic moving belt.

the material, by which its stiffnes increases. Figure 2 shows relaxation and creep effect by
repeated deformations of treated polyester cord 1100×2×5 [7]. The viscoelastic
characteristic generally leads to reduced noise and vibrations in the accessory systems. On
the other hand, it can also cause excessive slip of belts which can lead to a temperature
increase. In order to accurately model the mechanical characteristics of belt materials such
as creep and damping, it is necessary to turn to the viscoelastic theory of materials.

The literature that is specially related to a viscoelastic moving continuum is very limited.
However, various methods have been presented for the vibration analysis of structures
composed of viscoelastic materials. Findley et al. [8] used the correspondence and
superposition principles to solve the governing equations of the viscoelastic beams.
Christensen [9] employed Fourier transform to solve the transient response of viscoelastic
beams. Chen [10] adopted Laplace transform and the resulting equation was solved by the
finite element method.

There is only one paper by Fung [11] so far discussing the dynamic response of a
viscoelastic moving string. In the paper the string material was assumed to be constituted
by the hereditary integral type. The governing equation was reduced to a set of second
order non-linear differential-integral equations that were then solved by the finite difference
method.

In this paper, based on the linear viscoelastic differential constitutive law, the equation
of motion, which is in the form of gyroscopic system, is obtained for a viscoelastic moving
belt with geometric non-linearities. As a first step to tackle the problem, free vibration and
forced vibration analysis is performed. A modal perturbation solution is developed in the
context of the asymptotic method of multiple scales for a general continuous autonomous
gyroscopic system with geometric non-linearity. The near-modal non-linear response for
autonomous systems is predicted by the perturbation method. The results obtained with
the quasi-static assumption and those without this assumption are compared. The effects
of elastic and viscoelastic parameters, axial moving speed and the non-linear term on the
response are also investigated.

2. EQUATIONS OF MOTION

A prototypical model of a viscoelastic moving belt is shown in Figure 3, where c is the
transport speed of the belt, L is the length of the belt span, V is the displacement in the
transverse direction. Several simplifying assumptions are made in modelling moving belts,
as follows: (1) only transverse vibration in the y direction is taken into consideration; (2)
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belt bending stiffness is negligible; (3) transport speed of belts, c, is constant and uniform;
(4) Lagrangian strain for belt extension is employed as a finite measure of the strain; (5)
the viscoelastic string is in a state of uniform initial stress.

Based on the above assumptions, the equation of motion in the y direction can be
obtained by Newton’s second law [11]:

0TA+ s1Vxx +Vxsx = rVtt , (1)

where the subscript notation x and t denote partial differentiation with respect to spatial
Cartesian co-ordinate x and time t, s is the perturbed stress, A is the area of cross-section
of the belt, r is the mass per unit volume, and T is the initial force.

For free vibration analysis, the system is subjected to the homogeneous boundary
conditions

V=0 at x=0 and x=L. (2)

For moving belts, the transverse acceleration is given by [11]

d2V
dt2 =

12V
1t2 +2c

12V
1x 1t

+ c2 12V
1x2 . (3)

Note that in equation (3), the first term on the right side represents the local acceleration
component, the second term represents the Coriolis acceleration component, and the last
term represents the centripetal acceleration component.

The one-dimensional linear differential viscoelastic constitutive law can be written as

Ps(t)=Qo(t), (4)

where P and Q are linear differential operators with respect to the time t. In a general form
these operators are expressed as

P= s
p

i=0

ai
1i

1ti , Q= s
q

i=0

bi
1i

1ti , (5, 6)

where ai and bi are material constants. The number of terms used in equations (5) and (6)
will depend on the viscoelastic characteristic of particular materials. The viscoelastic
relationship may also be written in symbolic form

s(t)=E*o(t), (7)

where E* is defined as

E*=P/Q. (8)

Equation (7) has to be interpreted simply as an alternative notation. As the linear
differential operator E* may be handled formally as an algebraic quantity, this notation
simplifies the formulations of the problem.

In this paper, only geometric non-linearity due to finite stretching is considered. For
moving belts with large amplitude, the perturbed Lagrangian strain component in the x
direction related to the displacement is given by

o(x, t)= 1
2V

2
x . (9)
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Applying the linear differential viscoelastic constitutive law, equation (7), the perturbed
stress is in the form

s=E*(1
2V

2
x ). (10)

Substituting equations (3) and (10) into equation (1) yields

r
12V
1t2 +2rc

12V
1t 1x

+0rc2 −
T
A1 12V

1x2 =E*(1
2V

2
x) Vxx +Vx{E*(1

2V
2
x )}x . (11)

Equation (11) has the same form as the equation of motion for moving elastic materials
proposed by reference [4]. The difference is that the usual modulus of elasticity E is replaced
by E* which is a linear differential operator characterizing the viscoelastic property of the
belt material. The differential operator E* determined from viscoelastic models
complicates the equations substantially.

Introducing the non-dimensional parameters

n=
V
L

, j=
x
L

, t= t 0 T
rAL21

1/2

, g= c 0rA
T 1

1/2

, E=
E*A
T

,

the following non-dimensional equation of transverse motion can be obtained:

12n

1t2 +2g
12n

1t 1j
+(g2 −1)

12n

1j2 =N(n), (12)

where the non-linear operator N(n) is defined as

N(n)=E(1
2n

2
j )njj + nj{E(1

2n
2
j)}j . (13)

Equations (12) and (13) are the generalized equations of motion valid for all kinds of
viscoelastic model. As a first step, the most frequently used Kelvin viscoelastic model is
chosen to describe the viscoelastic property of the belt material in this paper. This model
is composed of a linear spring and a linear dashpot connected in parallel. The
corresponding linear differential operator E* for Kelvin viscoelastic model is

E*=E0 + h
1

1t
, (14)

where E0 is the stiffness constant of the spring and h is the dynamic viscosity of the dashpot.
According to the definition of non-dimensional parameters, the dimensionless operator E
can be expressed as

E=Ee +En

1

1t
, (15)

where

Ee =E0A/T, En = hX A
rTL2 . (16, 17)

Substituting equation (15) into equation (13), and with some manipulations, the non-linear
operator N(n) for the Kelvin viscoelastic model becomes

N(n)=
3
2

Een
2
jnjj +En

1

1t 012 n2
j1njj + njEn

1

1t
(njnjj). (18)
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It should be mentioned that the non-linear operators in equation (18) for the Kelvin model
are due to the geometric non-linearity.

Introduce the mass, gyroscopic, and linear stiffness operators as follows:

M= I, G=2g
1

1j
, K=(g2 −1)

12

1j2 , (19)

where operators M and K are symmetric and positive definite for sub-critical transport
speeds; G is skew-symmetric and represents a convective Coriolis acceleration component.
Thus, equation (12) can be written in a standard symbolic form as

Mntt +Gnt +Kn=N(n). (20)

3. NON-LINEAR FREE VIBRATION ANALYSIS

In this section, non-linear vibration analysis will be performed to obtain free response
and natural frequencies of viscoelastic moving belts. The method of multiple scales [12]
is applied directly to the governing equations of motion without a priori assumption
regarding the spatial solutions. Introducing a small dimensionless parameter o as a
bookkeeping device, equation (20) can be rewritten as

Mntt +Gnt +Kn= oN(n). (21)

A second order uniform approximation is sought in the form

n(j, t, o)= n0(j, T0, T1)+ on1(j, T0, T1)+ · · · , (22)

where T0 = t is a fast scale characterizing motions occurring at one of the natural
frequencies vk of the system, and T1 = ot is a slow scale characterizing the shift in the
natural frequencies due to the non-linearity.

Using the chain rule, the time derivatives in terms of T0 and T1 become

1

1t
=

1

1T0
+ o

1

1T1
+ · · · ,

12

1t2 =
12

1T2
0
+2o

12

1T0 1T1
+ · · · . (23, 24)

Substituting equations (22)–(24) into equation (21) and equating coefficients of like powers
of o gives

M
12n0

1T2
0
+G

1n0

1T0
+Kn0 =0, n0 =0 at j=0 and 1; (25, 26)

M
12n1

1T2
0
+G

1n1

1T0
+Kn1 =−2M

12n0

1T0 1T1
−G

1n0

1T1
+N(n0), (27)

n1 =0 at j=0 and 1. (28)

The excitation components on the right side of equation (27) are evaluated at the first order
solution n0 and are known at each level of approximation. The non-linear operator N(n0)
in equation (27) acts on the first order correction to the displacement and velocity fields.

Equation (25) is satisfied by

n0 =ck (j)Ak (T1) eivkT0 +c�k (j)A�k (T1) e−ivkT0, (29)

where ck (j) is the kth complex eigenfunction of the displacement field, vk is the kth natural
frequency of the system (see Appendix), and the overbar denotes complex conjugate.
Function Ak will be determined by eliminating the secular terms from n1. Equation (29)
corresponds to the free response of the unperturbed system, equation (25), in the kth mode
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Substituting equation (29) into equation (27) leads to

M
12n1

1T2
0
+G

1n1

1T0
+Kn1 =M1k (Ee +2ivkEn )A3

k e3ivkT0

+ [M2k (3Ee +2ivkEn )A2
kA�k −2ivkA'kMck −A'kGck ] eivkT0 + cc, (30)

where cc denotes the complex conjugate of all preceding terms on the right side of equation
(30), the prime indicates the derivative with respect to T1 and M1k , M2k are non-linear
spatial operators which are defined as

M1k =
3
2 01ck

1j 1
2
12ck

1j2 , M2k =
1
2 $01ck

1j 1
2
12c�k

1j2 +2
1ck

1j

1c�k

1j

12ck

1j2 %. (31, 32)

Equation (30) has a solution only if a solvability condition is satisfied. This solvability
condition demands that the right side of equation (30) be orthogonal to every solution of
the homogeneous problem. For the case where internal resonance does not exist, the
solvability condition can be determined as

−2ivkA'kmk −A'kgki+(3Ee +2ivkEn )A2
kA�km2k =0 (33)

in which

mk = �Mck , ck�, gk =−i�Gck , ck�,

m2k = �M2k ,ck�, (34–36)

and the notation �· , ·� represents the standard inner product of two complex functions
over j$(0, 1).

Referring to Wickert and Mote [2], the kth natural frequency and eigenfunction which
has been normalized such that mk =1 for linear moving belts are

vk = kp(1− g2), ck =z2 sin (kpj) e(ikpgj). (37, 38)

The complex eigenfunctions indicate that unlike non-gyroscopic linear systems, the
material particles comprising axially moving continua do not pass through equilibrium
simultaneously.

Substituting the eigenvalues and eigenfunctions given by equations (37) and (38) into
equations (35) and (36) leads to

gk =2kpg2, m2k =−1
4p

4k4(3+2g2 +3g4). (39, 40)

It can be seen that both gk and m2k are real.
Express Ak in the polar form

Ak = 1
2ak eibk. (41)

Note that ak and bk represent the amplitude and the phase angle of the response,
respectively.

Substituting equation (41) into equation (33) and separating the resulting equation into
real and imaginary parts yield

1
2akb'k (2vk + gk )+

a3
k

8
(3Ee Re (m2k )−2vkEn Im (m2k ))=0, (42)

− 1
2a'k (2vk + gk )+

a3
k

8
(3Ee Im (m2k )+2vkEn Re (m2k ))=0, (43)
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where Re (m2k ) and Im (m2k ) denote the real and imaginary components of m2k . Since m2k

is real, Im (m2k ) should be zero for viscoelastic moving belts.
Equation (43) is an ordinary differential equation involving one variable ak only. After

some manipulations, equation (43) can be rewritten as

dak

dT1
=Cka

3
k , (44)

where

Ck =
3Ee Im (m2k )+2vkEn Re (m2k )

4(2vk + gk )
. (45)

For viscoelastic moving belts, substituting equations (39) and (40) into equation (45) leads
to

Ck =−
1
16

p4k4(1− g2)(3+2g2 +3g4)En . (46)

Therefore, ak can be obtained from equation (44) in the form

ak =
a0

z1−2Cka
2
0T1

, (47)

where a0 is the initial amplitude.
Substituting equation (46) into equation (47), the response amplitude of viscoelastic

moving belts with geometric non-linearity can be written in the form

ak =
a0

X1+
k4p4En (1− g2)(3+2g2 +3g4)a2

0ot

8

. (48)

It should be noted that for the linear elastic constitutive law which does not account for
damping, the amplitude ak is a constant. However, for a viscoelastic model which takes
account the damping of belt materials, the amplitude ak should decrease with time and thus
a'k $ 0.

Substituting equation (47) into equation (42) gives

dbk

dT1
=−

Dka
2
0

1−2Cka
2
0T1

, (49)

where

Dk =
3Ee Re (m2k )−2vkEn Im (m2k )

4(2vk + gk )
. (50)

For viscoelastic moving belts, substitution of equation (40) into equation (50) yields

Dk =− 3
32Eep

3k3(3+2g2 +3g4). (51)

Solving equation (49), the solution can be expressed as

bk =
Dk

2Ck
ln (1−2Cka

2
0T1)+ bk0(Ck $ 0), (52)

bk =−Dka
2
0T1 + bk0(Ck =0), (53)

where bk0 is a constant.
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Now that ak , bk and thus Ak are obtained, the first order asymptotic solution for the
free vibration of moving viscoelastic belts can be obtained:

n0 = 1
2ck (j)

a0

z1−2Cka
2
0ot

ei(vkt+(Dk /2Ck ) ln (1−2Cka2
0
ot)+ bk0) + cc (Ck $ 0), (54)

n0 =
1
2

ck (j)a0 ei((vk −Dka2
0
o)t+ bk0) + cc (Ck =0). (55)

Note that equation (55), for Ck =0, corresponds to the linear elastic model.
Equation (54) shows clearly that the first order asymptotic solution is not a simple

harmonic motion due to existence of material damping introduced by the viscoelastic
model. If the material has light damping, the value of 2Cka

2
0 is very small. In this case,

the non-linear frequency vNk can be approximated as

vNk =vk −Dka
2
0o. (56)

Using equation (51), for light damping, the natural frequency of the viscoelastic
geometric non-linear moving string is derived from equation (55) as

vNk = kp(1− g2)+
3Eea

2
0 (kp)3

32
(3+2g2 +3g4). (57)

It can be seen that the non-linear natural frequency of the system for the first order
approximation is independent of the viscoelastic characteristic of the material when the
Kelvin model is adopted. This is not surprising, as the frequencies of lightly damped
viscoelastic materials should approach that of the elastic materials.

It follows from equation (33) that

A'k =
(3Ee +2ivkEn )m2k

2ivkmk + igk
A2

kA�k . (58)

Substituting equation (58) into equation (30), the resulting equation can be rewritten as

M
12n1

1T 2
0
+G

1n1

1T0
+Kn1 = f1(j)A3

k e3ivkT0 + f2(j)A2
kA�k eivkT0 + cc, (59)

where

f1(j)=M1k (Ee +2ivkEn ), (60)

f2(j)=M2k (3Ee +2ivkEn )− (2ivkMck +Gck )
(3Ee +2ivkEn )m2k

2ivkmk + igk
. (61)

The solution of equation (59), which is the corresponding response correction of n0, can
be obtained using separation of variables,

n1 = h1(j)A3
k e3ivkt + h2(j)A2

kA�k eivkt + cc, (62)

where

h1(j)= s
n=21, 22 . . .

�f1(j), cn (j)�

1−
3vk

vn

cn (j), h2(j)= s
n=21, 22 . . .

n$ k

�f2(j), cn (j)�

1−
vk

vn

cn (j).

(63, 64)
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The specification of no internal resonance requires that vk /vn and 3vk /vn be away from
unity.

Examining equations (62)–(64), it can be seen that the spatial variations of the first order
solutions are different from those of the linear solutions. Hence, the validity of the
assumption that the spatial variation can be represented in terms of linear eigenfunctions
is questionable. However, this assumption is the basis for the usual perturbation approach
in which the partial differential equation is discretized first using linear eigenfunctions.

4. RESULTS AND DISCUSSION

Numerical results for the free vibration of viscoelastic moving belts are presented in this
section. Effects of moviing speed, non-linearity and viscoelasticity are investigated. In the
vibration analysis of moving belts, many people [6, 13, 14] adopt the ‘‘quasi-static stretch’’
assumption under which dynamic tensions in the belt are uniform throughout the span.
When T�EA, the quasi-static stretch assumption is valid. In this case, the axial wave
spreads much faster than the transverse wave. Thus, the variation of axial stress can be
approximated to spread instantly from one end to the other. Using the method of multiple
scales, free responses with this assumption are obtained to compare with those given in
previous sections. Redefined M1k , M2k , m2k , Ck , and Dk for the case with quasi-static
assumption are

M1k =
12ck

21j2 g
1

0 01ck

1j 1
2

dj, (65)

M2k =
12ck

31j2 g
1

0 01ck

1j 101c�k

1j 1 dj+
12c�k

61j2 g
1

0 01ck

1j 1
2

dj, (66)

m2k =−
k2p2

6j2 (2k2p2g2(g2 +1)2 + sin2 (kpg)), (67)

Ck =−
Enp

2k2(1− g2)(2p2k2g2(1+ g2)2 + sin2 (kpg))
24g2 , (68)

Dk =−
Eepk(2p2k2g2(1+ g2)2 + sin2 (kpg))

16g2 . (69)

Applying equations (54) and (62), the natural frequencies and response amplitudes of
viscoelastic moving belts with geometric non-linearity under the quasi-static assumption
are derived as

vNk = kp(1− g2)+
Eea

2
0 (kp)3

8 $(1+ g2)2 +
1
2 0sin (kpg)

kpg 1
2

% , (70)

ak =−
a0

z1+ [Enp
2k2a2

0 (1− g2)(2p2k2g2(1+ g2)2 + sin2 (kpg))ot]/12g2
. (71)

It can be seen that for viscoelastic materials, the natural frequencies given by equation (70)
are identical to those of elastic systems [6]. However, the response amplitudes depend on
the viscoelastic property of the material. When the linear elastic model is considered, in
which En =0, the response amplitude remains constant. This conclusion agrees with
reference [6].
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Figure 4 compares the fundamental natural frequencies without the quasi-static
assumption and those with the quasi-static assumption for moving belts. The non-linear
natural frequency is plotted against the non-dimensional transport speed. The material is
assumed to be linear elastic, i.e., En =0. Different values of Ee are chosen to show the
influence of non-linearity. The higher the value of Ee , the stronger the non-linearity of the
system. It is observed that the natural frequency decreases as the transport speed increases.
This is because a larger moving speed leads to a smaller linear stiffness of the belt, resulting
in lower frequencies. Note that with the increase in the non-linearity, the natural frequency
increases. It can be seen that the results with the quasi-static assumption and those without
such an assumption are close to each other at the lower speed range. The difference,
however, grows with the moving speed. This is because at a higher moving speed, the
contribution of the non-linearity to the natural frequencies is larger. Since the quasi-static
assumption only involves the non-linear terms, the difference between non-linear terms
with the quasi-static assumption and those without quasi-static assumption leads to a
larger difference of natural frequencies.

To show the influence of viscoelastic parameter En on non-linear natural frequencies,
equation (54) is rewritten in the near- and exact-resonance conditions as

n0 = zR
k cR

k + zI
kc

I
k , (72)

where zR
k and zI

k are generalized co-ordinates governing the evolution of the real and
imaginary components of the eigenfunction ck , zR

k and zI
k , and can be derived as

zR
k =

a0

z1−2Cka
2
0ot

cos 0vkt+
Dk

2Ck
ln (1−Cka

2
0ot)+ bk01 , (73)

zI
k =

a0

z1−2Cka
2
0ot

sin 0vkt+
Dk

2Ck
ln (1−Cka

2
0ot)+ bk01 . (74)

Figure 4. A comparison of non-linear fundamental frequencies of an elastic moving belt (a0 =0·005): ––,
without quasi-static assumption; · · · · · , with quasi-static assumption; +, Ee =400; R, Ee =1600; W, Ee =3600.
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Figure 5. (a) Waveform of generalized co-ordinate zR
I and (b) the discrete Fourier transform of the waves for

Ee =400, g=0·5: ––, En=0·1; – · –, En =1; · · · · · · , En =10.

zR
k and zI

k in the time domain and the frequency domain for different values of En are
displayed in Figures 5 and 6, respectively, to show effects of viscoelasticity on natural
frequencies. The viscoelastic parameters En are chosen as 0·1, 1 and 10, respectively. Since
zR

k and zI
k are not of simple harmonic motion, it is difficult to show the influence of En on

natural frequencies during a short time scale. Thus, in Figures 5 and 6, the starting point
of the non-dimensional time is chosen as 500. It can be seen that even after a longer time,
the difference of natural frequencies among different values of En is still small. Therefore,
for a first order approximation, the viscoelasticity does not have a significant effect on the
natural frequency of viscoelastic moving belts. Materials with strong damping that do not
suffer from greatly reduced natural frequencies are conceivable.

The effect of the viscoelastic parameter En on the response amplitude ak is illustrated in
Figures 7 and 8. In Figure 7, the response amplitude is plotted over the non-dimensional
time range 0–500. Ee and the non-dimensional transport speed g are set to be 400 and 0·5,
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respectively. Three different values of viscoelastic parameter En are considered. At the time
instant t=500, the amplitude decrease is 2% for En =0·1, 16·2% for En =1 and 56·2%
for En =10. As expected, the response amplitude decreases with time and the amplitude
is strongly dependent on the viscoelastic coefficient En . In Figure 8, the response amplitude
is plotted over the viscoelastic parameter En ranging from 0 to 50 at the time instant t=500
while other parameters remain the same as those in Figure 7. It can be seen that the larger
En is, the smaller the amplitude. Since higher En correspond to higher damping, the
viscoelastic nature of the material can be effective in reducing the vibration of moving belts.

Figure 9 shows the effect of non-linearity, reflected by Ee , on response amplitudes for
viscoelastic moving belts. Three viscoelastic systems having identical En and g but having
different Ee are compared: en =1 and g=0·5. For system 1, Ee =400; for system 2,
Ee =2500; for system 3, Ee =10 000. It is clear that the amplitudes are identical for three
different systems over the non-dimensional time range 0–500. Hence, it is concluded that

Figure 6. (a) Waveform of generalized co-ordinate zI
1 and (b) the discrete Fourier transform of the waves for

Ee =400, g=0·5: ––, En=0·1; – · –, En =1; . . . . . . , En =10.
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Figure 7. The influence of viscoelasticity on response amplitudes for Ee =400, g=0·5: ––, En=0·1; – · – · –,
En =1; · · · · · · , En =10.

the non-linear parameter Ee has no influence on the amplitude of response while Ee affects
the non-linear natural frequencies of viscoelastic moving belts, as shown in Figure 4.

5. CONCLUSIONS

In this paper, the non-linear natural frequencies and near-modal non-linear response for
free vibration of viscoelastic elastic moving belts are obtained by using the method of
multiple scales. The Kelvin model is adopted to describe the viscoelastic characteristic of
belt materials. The governing equaion of motion is derived and cast in a first order form.
The method of multiple scales is applied directly to the governing partial differential
equation. The effects of axial moving speed, geometric non-linearity and viscoelastic
property on the natural frequencies and amplitudes of free response are investigated from
the numerical examples. The following conclusions are made in this study:

Figure 8. The influence of viscoelasticity on response amplitudes for Ee =400, g=0·5 at time instant 500.
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Figure 9. The influence of non-linearity on response amplitudes for En =1, g=0·5: × , En =400; R,
Ee =1600; w, Ee =3600.

(1) The damping introduced by the viscoelastic model has no significant effect on
non-linear natural frequencies while it has an important influence on the amplitude of
response for viscoelastic moving belts. The response amplitude decreases with time more
quickly than the increase of the viscoelastic coefficient En . Thus, materials with strong
viscoelastic property can effectively reduce the vibration of moving belts without suffering
from greatly reduced natural frequencies.

(2) The non-linear natural frequencies decrease as the moving speed increases.
(3) The natural frequencies grow with the non-linear parameter Ee , but the free response

amplitude does not change with Ee .
(4) No assumptions about the spatial dependence of the motion are made in the method

of solution. This is more appropriate than usual perturbation approaches in which the
linear spatial solutions are assumed a priori to describe the spatial solution of the
non-linear problem.

(5) The method of solution can be applied to a wide range of gyroscopic systems and
general linear viscoelastic materials without being restricted to moving materials and the
Kelvin model.
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APPENDIX: CLOSED-FORM SOLUTION

The closed-form solution for the vibration analysis of linear moving materials is
presented [2] in this appendix. The base solution is used in the non-linear vibration analysis
of moving belts.

Introduce the state vector and the excitation vectors

w=6nt

n7 , q=6 f
07 , (A1)

and the matrix differential operators

A=$M0 0
K% , B=$ G

−K
K
0% . (A2)

Equation (20) without the non-linear term becomes

Awt +Bw= q. (A3)

Equation (A3) is a canonical form of the equation of motion and its solution satisfies the
initial condition n0 and the corresponding boundary condition. The general solution of the
linear response for equation (A3) is

w(j, t)= s
n=21, 22, . . .

zn (t)fn (j), (A4)

where

zn (t)= zn (0) elnt +g
t

0

eln (t− t)qn (t) dt, qn (t)= �q, fn�, zm (0)= �Aw0, fn�

(A5–A7)

and the eigenvalues ln = ivn are imaginary with natural frequencies vn being positive for
ne 1; fn (j) is the state eigenfunction that has the representation fn = {lncn , cn}T in terms
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of the complex scalar eigenfunction cn of the displacement field; fn (j) satisfies the
orthogonal relations

�Afn , fm�= dmn , �Bfn , fm�=−lndmn , for n, m=21, 22, . . . . (A8)

In particular, the closed form steady-state displacement response for the non-resonance
harmonic excitation q= {f(x) eivt 0}T is

n(j, t)= eivt s
n=21, 22, . . .

�f, cn�
1−v/vn

cn (j). (A9)


